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Mechanism Summary 

• There are six mechanisms in OCE2: 
1.  Scan Drum 
2.  Half-Angle Mirror 
3.  Momentum Compensator 
4.  Tilt Linkage 
5.  Calibration Assembly 
6.  Launch locks on Scan Drum and Tilt 

Carriage 
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1. Scan Drum (1/2)  

•  Requirements 
–  Accurate control of angular position vs. time 

•  Angle readout accuracy = 20 arcsec 

–  Scan rate = 369 rpm 
–  Continuous operation for mission life of 3 years 
–  Direct drive design to support high bandwidth servo loop 

• Motor 
–  Brushless DC motor with redundant windings: Inland, Aeroflex 
–  Estimated EOL bearing friction = 19.2 in-oz (0.14 N-m) 
–  Maximum mechanical power output at 370 rpm = 5 watts 
–  Assume 50% efficiency; elec power draw = 5/50% = 10 watts 

•  Angular Position Sensor 
–  Inductosyn Absolute rotary resolver 

•  128x and 1x outputs 
•  4.16” OD x 0.95“ ID x 0.35” width; 5 arcsec accuracy 

–  Need to include a rotary transformer to pass power to rotating winding 

•  The momentum M of the Scan Drum is: 
–  M = MOIdrum * ω = (1,069,947 kg-mm2) * (369rpm) = 41.344kg-m2/sec 

•  Bearing friction torque Tf estimate  
–  = Tf   = D/2 * f * load * 2 bearings *10 for EOL 
–             1 in * 0.002 * 30 lb * 2*10 = 19.2 in-oz (0.14 N-m) 
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1. Scan Drum (2/2)  

•  Primary concern is bearing life: 
–  Scan Tube rotates 0.58 billion revolutions in 3 years 
–  Momentum Compensator rotates 2.33 billion revolutions in 3 years 

•  SeaWiFS has operated on orbit for 13 years at 360 rpm = 2.05 billion rev 
–  Several design choices made this possible: 

•  Use of lubricant reservoirs 
•  Low roughness finish on balls and races 

–  Other factors that are inherently  important to long bearing life: 
•  Close machining tolerances on perpendicularity of bearing race seating shoulders 
•  Thorough cleaning before assembly in Class 100 Clean Bench 
•  Careful assembly to minimize race non-perpendicularity 
•  Launch lock must effectively isolate bearings from launch environment 
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Inductosyn (1/2) 

•  http://www.ruhle.com/absolute_rotary_transducer.htm 
•  http://www.ruhle.com/PDF%20Files/Farrand%20Controls%20Brochure.pdf   
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Inductosyn (2/2) 

2 watt power draw according to mfgr 
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2. Half-Angle Mirror 

•  Requirements  
–  Must accurately synchronize its angular position to Scan Tube position 

•  Required angle synchronization accuracy: 15 arcsec 

–  rotates at precisely -1/2 of Drum speed = -184.5 rpm 
–  Continuous operation for mission life of 3 years 
–  Direct drive design to support high bandwidth servo loop 

• Motor 
–  Brushless DC motor with redundant windings  
–  Estimated bearing friction = 3 in-oz (0.02 N-m) 
–  Maximum mechanical power output at 184.5 rpm = 0.9 watts 
–  Assume 50% efficiency; electrical power draw = 0.9/50% = 2 watts 

•  Angular Position Sensor 
•  Inductosyn Absolute resolver (same as Scan Drum) 

–  4.16” OD x 0.95“ ID x 0.35” width; 5 arcsec accuracy 
–  Need to include a rotary transformer to pass power to rotating winding 

–  If the MOI on the Half Angle Mirror shaft were increased to half of the Scan Tube 
MOI, the Momentum Compensation mechanism could be eliminated. 

–  Fric torq = D/2 * f * load * 2 bearings *10 for EOL 
–                   1 in * 0.002 * 5 lb * 2*10 = 3.2 in-oz (0.023 N-m) 
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3. Momentum Compensator (1/2) 

•  Requirements 
–  Angular speed must bring net momentum vector to less than TBD to reduce demand on 

satellite ACS. 
–  Angular speed = -4 * 369 rpm = -1,476 rpm 
–  Continuous operation 
–  Direct drive to support high bandwidth servo loop 

• Motor 
–  Brushless permanent magnet motor with redundant windings  
–  Estimated bearing friction = 19.2 in-oz (0.14 N-m) 
–  Maximum mechanical power req’d at 1,476 rpm = 21 watts 
–  Assume 50% efficiency; elec power draw = 21/50% = 42 watts 

•  Position readout 
•  Resolver 

–  1x and 16x windings 
–  Need to include a rotary transformer to pass power to rotating winding 

•  Bearing friction torque = D/2 * f * load * 2 bearings *10 for EOL 
–                   1 in * 0.002 * 30 lb * 2*10 = 19.2 in-oz (0.14 N-m) 
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3. Momentum Compensator (2/2) 

• Momentum Compensation flywheel is nominally sized 
to have 25% of the mass MOI of the Scan Drum. 

• So the angular speed of the flywheel must be 
nominally 4x the speed of the Scan Drum: 
–  4 x 369 rpm = 1,476 rpm 

• The flywheel is presently made of stainless steel and 
is a simple constant thickness disc:  
–  it could be made with a heavy rim and thin web to save 

weight while maintaining its MOI. 
–  Its size could be increased to lower the required speed. 
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4. Tilt Linkage (1/2) 
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0o Nadir 
configuration 

•  REQUIREMENT: Must tilt instrument to  0º, +20º and -20º, ±15 arcsec 
•  Principle of operation: 

–  Link AB is hinged to cranks O and Q at points A and B. 
–  The motor at O is fixed on the cradle. The motor at Q is moving with the rest of the 

instrument. The tilt axis passes through P. 
–  Similar mechanism was used on SeaWiFS. 
–  At all three angles, cranks O and Q are in toggle positions, so even large stepper motor errors 

produce very minor (cosine) errors in the tilt position of the instrument. 

•  All bearings must be angular contact ball bearings, preloaded to eliminate 
backlash; at 886mm tilt arm radius, ±15 arcsec = ±0.06mm (±0.0025”) 

Link PQ 
 is rigidly attached 
to the instrument.  

Stepper motors 
with resolvers 
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4. Tilt Linkage (2/2) 

• Tilt motors (2) 
–  Stepper motors with 200:1 gearboxes and redundant windings 
–  Duty cycle: 52 seconds per orbit (orbit = 97.72 minutes) 
–  Time allowed for 20o motion = 13 seconds  
–  Estimated bearing friction = 8 in-oz (0.056 N-m) - SeaWiFS heritage 

• Resolver (one per motor) 
–  1x and 16x outputs to R/D converter 
–  Need to include a rotary transformer to pass power to rotating winding 
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5. Calibration Target 

• Requirements  
–  Position accuracy: ±0.1º 
–  Duty cycle: Maximum of 40 seconds per month 
–  Time allowed for 90o motion = 10 seconds 

• Motor 
–  Estimated bearing friction = 8 in-oz (0.056 N-m) 
–  Stepper motor/resolver with a 100:1 gearhead, and redundant winding  

• Resolver 
–  1x and 16x outputs to R/D converter 
–  Need to include a rotary transformer to pass power to rotating winding 
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6. Launch Locks 

• Requirements  
•  Both locks must isolate dynamic launch loads from critical, 

preloaded ball bearings without imposing additional static loads 
• Launch Lock on the Tilt Mechanism 

•  Needed to pass launch loads from tilting cradle to stationary 
structure 

•  Released by a HOP (High Output Paraffin) actuator 
•  [we should add gussets on the tilt cradle to improve stiffness and 

resonant frequency] 
• Launch Lock on the Scan Tube 

–  Needed to pass launch loads from Scan Tube to tilting cradle 
–  Released by a HOP (High Output Paraffin) actuator 
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Mechanism Controller Functional 
Requirements 

  1. Scanning Telescope 
–  Rotates at 6.15 rev/sec (= 369 RPM) continuous 
–  Position error budget is 0.108 mrad peak from the nominal. 

  2. Half Angle Mirror  
–  Rotates at -184.5 RPM continuous and maintains phase synch with the Primary Mirror. 
–  Position error budget with respect to the Primary Mirror is 0.108 mrad peak. 

  3. Momentum Compensator 
–  Net Momentum Compensator mass rotates at nominally 4 x 369 = 1,476 RPM continuous to 

compensate the momentum generated by the Scan Tube and Half-Angle mirrors. 
  4. Tilt Mechanism 

–  Two stepper motor/gearboxes are used independently to tilt the OCE instrument +/- 20 degrees 
within 13 sec. and achieve precise positioning at +20, 0 and -20 degrees. Step size of gearbox 
output is 0.0625º. The effect of these steps on the OCE tilt angle is nonlinear, but provides 
accurate tilt angles at ends of 180 degree travel. 

–  Must be able to operate 2 Motors simultaneously. 
–  Provide Launch Lock control. 
–  Provide tilt position knowledge accurate to ± 15 arcsec = ± 0.004 deg.  

  5. Calibration Mechanism 
–  Move 90 degrees in 10 sec. 
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Proposed Controller Solution 

  Common Features for both Scan Drum and Half Angle Mirror Drives 
•  Use direct drive Brushless DC motors with redundant windings; no backlash between motor and load. 
•  Use FPGA controller to close the mechanism control loop to achieve design flexibility through software for both the Scan Drum 

and Half Angle Mirror. 
•  For ground calibration, Incorporate independent stationary static position control of both Drum and Mirror. 
•  Use Inductosyn resolvers for position knowledge and motor commutation. 
•  Achieve high closed loop bandwidths to give good disturbance rejection (unbalance in 1g, bearing torque variations) for both the 

Scan Drum and Half Angle Mirrors. 
•  Provide out-of-lock detection capability. 

  Scan Drum Assembly 
–  Ramp up the Scan Drum speed slowly to minimize transient effects until desired speed is reached. 

 Switch to PLL controller and acquire phase-lock to the 0.1 µsec resolution command clock (using 10 MHz counter clock)  
  The phase error contribution from the command clock shall be less than 0.2%.  
  The 11th bit of the R/D converter output is used to phase lock. 

–  Absolute Drum position used to initiate integration at each pixel. 

  Half Angle Mirror 
–  Ramp up the Half Angle Mirror speed, then frequency-lock to the Scanning Mirror to pull within the phase-lock range.  
  Switch to PLL controller and acquire phase-lock to the same command clock as the Scanning Mirror. 

  12th bit of the R/D converter output is used for the phase lock. 

  Momentum Compensator 
–  Ramp-up and switch to PLL to maintain the  nominal speed of 4x the Drum speed. 

  Tilt and Calibration Mechanisms 
–  Use geared stepper motors with redundant windings 
–  Use resolvers and R/D converters with 12-bit resolution 
–  Use HOP pin puller for the launch lock 
–  Provide end-of-travel detection using resolver outputs 
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Mirror and Momentum Compensator Control Architecture 
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Tilt and Calibration Control 
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Required Boards (Current Best Estimate) 

• Controller board for brushless DC motors 
–  Primary mirror, half-angle mirror, momentum 

compensator 

• Controller board for stepper motors 
–  Tilt linkage, calibration device 

• Power converter board 
• C&DH board 
• Power interface board 
Note: All boards have A-Side B-Side redundant circuits.  
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Electrical Power Estimate 
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Concerns 

•  Primary concern is bearing life: 
–  Scan Tube rotates 0.58 billion revolutions in 3 years 
–  Momentum Compensator rotates 2.33 billion revolutions in 3 years 

•  SeaWiFS has operated on orbit for 13 years at 360 rpm = 2.05 billion rev 
–  Several design choices made this possible: 
–  Use of lubricant reservoirs 
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Suggested Future Activities 

• Life test plan of the bearings 
–  Bearing life is a risk area.  
–  GSFC golden rules require a life test equivalent to 6 years 

for a 3 year mission. 
–  We should start vibration and vacuum life testing as soon as 

possible. 
–  Accelerating these life tests may be possible. 

• FPGA modular firmware development will have been 
completed for previous and current flight projects; 
examples: TIRS, GPM, ICESat. Additional development 
costs for OCE2 will be minimal. 
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The bearing friction torque Mr = F . f . (d/2) 
alternatively .. 
The bearing friction torque Mr = F . fm . (Dm/2) 
(friction values below marked with ***) 

• Mr = Friction torque (Nmm) 
• F = Radial (or axial load) (N) 
• f = coefficient of friction of rolling bearing . 
• fm = coefficient of friction of rolling bearing based on mean 
diameter 
• d = Diameter of the bore of the bearing (Shaft diameter)(mm) 
• D = Outside diameter of the bearing (mm) 
• Dm = (d+D)/2 (mm) 
These values relate to running bearings without seals and with 
optimimum lubrication..The start-up friction values will be higher 
-up to twice the values quoted below.. 

• Single row ball bearing (radial Load) ..f = 0,0015 
• Angular contact ball bearing (single row) ..f = 0,0020 
• Angular contact ball bearing (double row) ..f = 0,0024 
• Self aligning ball bearing (radial load) ..f = 0,0010 
• Cylindrical roller bearings with cage ..f = 0,0011 
• Cylindrical roller bearings full complement ..f = 0,0020 
• Thrust ball bearing (axial load) ..f = 0,0013 
• Spherical roller bearing (radial Load) ..f = 0,0018 
• Taper roller bearings ..f = 0,0018 
• Needle roller bearings-with cage ..fm = 0,003 
• Needle roller ball bearings-full Complement ..fm = 0,005 
• Combined needle roller bearings ..fm = 0,004 
• Axial Needle roller ball bearings ..fm = 0,0035 
• Axial Cylindrical roller bearings ..fm = 0,0035 

The bearing friction torque Mr = F . f . (d/2) 
alternatively .. 
The bearing friction torque Mr = F . fm . (Dm/2) 
(friction values below marked with ***) 
• These values relate to running bearings without 
seals and with optimimum lubrication.. 
The start-up friction values will be higher -up to twice 
the values quoted below.. 

Backup 
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Bearing Life Estimate 

•  Bearing Life Calculation 
–  TBP (Total # of ball passes for 1x life) = (# of balls in bearing/1.8) x (total # of revolutions for 1x life) 
–  TSC (Total Stress Cycles) = (bearing mean Hertzian stress) x TBP 
–  ASC (allowable stress cycles for Bray 601) = 2 x 1012 (ball-passes x psi) 
–  LSCM (Lubricant Stress Cycle Margin) = (ASC/TSC) -1 
–  Margin must be >0 

•  For the Scan Drum: 
–  #balls = 30 
–  #rev = 369 rpm x 3 years = 0.58 x 109 rev 
–  Stress = 100ksi (335ksi max for smooth running) 
–  TBP = (30/1.8) x 0.58 x 109 rev = 9.7 x 109 

–  TSC = 100,000 psi x 6.097 x 1010 = 9.7 x 1014   
–  LSCM = (ASC/TSC) -1 = [2 x 1012 (ball-passes x psi)/(9.7 x 1014)]-1 = -0.998 

•  For the Momentum Compensator: 
–  #balls = 30 
–  #rev = 4 x 369 rpm x 3 years = 2.33 x 109 rev 
–  Stress = 100ksi (335ksi max for smooth running) 
–  TBP = (30/1.8) x 1.463 x 1010 rev = 3.88 x 1010 
–  TSC = 100,000 psi x 2.439 x 1011 = 3.88 x 1015  
–  LSCM = (ASC/TSC) -1 = [2 x 1012 (ball-passes x psi)/(3.88 x 1015)]-1 = -0.9998 
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360 rpm *5 yr = 9.461*10^8 rev 



I  n  s  t  r  u  m  e  n  t      S  y  n  t  h  e  s  i  s      &      A  n  a  l  y  s  i  s      L  a  b  o  r  a  t  o  r  y 

Mechanisms, p25 
Presentation Version 

OCE2 Study Week Apr 23 – 27, 2012   
Presentation Delivered Apr XX, 2012 

Do not distribute this material without permission  
from Jay Smith/550 (James.C.Smith@nasa.gov) 

From SeawiFS CDR 1991 - 2/6 



I  n  s  t  r  u  m  e  n  t      S  y  n  t  h  e  s  i  s      &      A  n  a  l  y  s  i  s      L  a  b  o  r  a  t  o  r  y 

Mechanisms, p26 
Presentation Version 

OCE2 Study Week Apr 23 – 27, 2012   
Presentation Delivered Apr XX, 2012 

Do not distribute this material without permission  
from Jay Smith/550 (James.C.Smith@nasa.gov) 

From SeawiFS CDR 1991 - 3/6 



I  n  s  t  r  u  m  e  n  t      S  y  n  t  h  e  s  i  s      &      A  n  a  l  y  s  i  s      L  a  b  o  r  a  t  o  r  y 

Mechanisms, p27 
Presentation Version 

OCE2 Study Week Apr 23 – 27, 2012   
Presentation Delivered Apr XX, 2012 

Do not distribute this material without permission  
from Jay Smith/550 (James.C.Smith@nasa.gov) 

From SeawiFS CDR 1991 - 4/6 



I  n  s  t  r  u  m  e  n  t      S  y  n  t  h  e  s  i  s      &      A  n  a  l  y  s  i  s      L  a  b  o  r  a  t  o  r  y 

Mechanisms, p28 
Presentation Version 

OCE2 Study Week Apr 23 – 27, 2012   
Presentation Delivered Apr XX, 2012 

Do not distribute this material without permission  
from Jay Smith/550 (James.C.Smith@nasa.gov) 

From SeawiFS CDR 1991 - 5/6 



I  n  s  t  r  u  m  e  n  t      S  y  n  t  h  e  s  i  s      &      A  n  a  l  y  s  i  s      L  a  b  o  r  a  t  o  r  y 

Mechanisms, p29 
Presentation Version 

OCE2 Study Week Apr 23 – 27, 2012   
Presentation Delivered Apr XX, 2012 

Do not distribute this material without permission  
from Jay Smith/550 (James.C.Smith@nasa.gov) 

From SeawiFS CDR 1991 - 6/6 


